EMERGENCY HYPOPHYSECTOMY FOR PITUITARY APOPLEXY IN A PREVIOUSLY UNDIAGNOSED CASE OF ACROMEGALY

Alexandra Ioana Trandafir¹, Eugenia Petrova^{1,2}, Adina Ghemigian^{1,2}, Ana Valea^{3,4}, Mara Carsote^{1,2}, Florica Ṣandru^{2,4}

1. "Constantin Ion Parhon" National Institute of Endocrinology, Bucharest, Romania

2. "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania

3. "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania

4. Elias Emergency Hospital, Bucharest, Romania

CASE	Abstract
REPORT	
DOI: 10.33695/rojes.v3i2.45 Accepted: 07.07.2021	Acromegaly is caused in majority of cases by a pituitary tumour, typically a macro-somatotropinoma. Pituitary apoplexy is a very rare event which requires prompt recognition and intervention. This complication represents an emergency because of the risk of panhypopituitarism, including adrenal insufficiency, optic chiasma
	anomalies and cranial nerves paresis, thus the pituitary surgical approach is needed in order to improve the prognostic. We aim to
	introduce an unusual case of pituitary apoplexy which started with headache on a previously asymptomatic young male adult, further on
	requiring hypopysectomy for the presence of somatotropinoma - related massive apoplexy. Imagistic and hystopathological
	examination diagnosed pituitary tumour apoplexy, a rare event that can explain laboratory findings such as moderately increased IGF1
	with uncharacteristically normal GH levels in 24 hours GH profile. This illustrates the complex effects of pituitary tumour apoplexy. In
	addition, it is worth mentioning that following surgical treatment, IGF1 levels and glycaemic status normalized and no pituitary
	insufficiency was found at 3 months follow-up. Our patient's case emphasizes the importance of rare pathologies such as pituitary
	tumour apoplexy in the differential diagnosis of severe headache in young otherwise healthy patients. Overall, the decision of
	neurosurgery in adenoma - related apoplexy helps the recovery of
	pituitary function, and even optic chiasma or cranial nerves complications.
Corresponding author: Mara Carsote	-
carsote_m@hotmail.com	Keywords: hypophysectomy, pituitary apoplexy, acromegaly

Introduction

Acromegaly is caused in majority of cases by a pituitary tumour, typically a macrosomatotropinoma [1]. The disease associates a higher risk of cardio-vascular events, glucose profile anomalies, some cancers, but also local complications due to the tumours itself [2]. Pituitary apoplexy is a very rare event which requires prompt recognition and intervention [3]. This complication represents an emergency because the risk of of panhypopituitarism, including adrenal insufficiency, optic chiasma anomalies and cranial nerves paresis, thus the pituitary surgical approach is needed in order to improve the prognostic. The larger tumour, the presence of other co-morbidities like diabetes mellitus might increase the risk of this unusual disease [4,5]. Some cases are treated conservatory, but most of them are considered an emergency, thus it is mandatory to rapidly address a neurosurgical approach [6]. Also, the conditions involve a medical emergency which presence of is linked to the panhypopituitarism, especially acute, secondary adrenal insufficiency [7].

We aim to introduce an unusual case of apoplexy which started with pituitary headache on a previously asymptomatic young requiring male adult. further on hypopysectomy for the presence of somatotropinoma - related massive apoplexy.

The patient agreed for anonymously presentation of his medical records from different hospitals.

Case presentation

A 26 year-old male patient without previous medical history, or family history of any disease, presented to the Emergency Room for severe headache accompanied by nausea and emesis. The patient was hemodynamically and respiratory stable. No neurological deficits or diplopia were present. He was treated with non-opioid analgesics, with poor response. Emergent MRI (magnetic resonance imaging) without contrast was performed at emergency room and it detected a pituitary macroadenoma of 18.5/23/25 mm (millimetre). The patient was therefore referred for further investigation.

On admission in our Institute, clinical examination of the patient revealed blood pressure of 130/80 mmHg, body mass index BMI of 32.24 kg/m2. Physical appearance was acromegaly-like with prominent supraorbital ridge, broad nose, large lips, macroglosia, coarsening of facial features and enlarged hands and feet. Photographic review suggested the onset of acromegalic features 5 years ago.

Laboratory evaluation revealed hepatic cytolysis and hypercholesterolemia (Table 1). Glycaemic status showed a fasting plasma glucose level of 146 mg/dL (normal range: 70-105) and glycosylated haemoglobin level of 10.4% (normal range: 4.8-5.9) (Table 1). The mean value of 24 hours GH (Growth Hormone) profile was 0.56 ng/mL and IGF1 (Insulin-like Growth Factor) was 393.3 ng/mL (normal range: 94-271) (Table 1,7).

Parameter	Value 1*	Value 2**	Normal	Units	
Ionic calcium	3.92	NA	3.9-4.9	mg/dL	
Total calcium	9.5	9.34	8.4-10.2	mg/dL	
Serum phosphorus	5.4	3.81	2.3-4.7	mg/dL	
fasting glycaemia	146	92.1	70-105	mg/dL	
Glycosylated hemoglobin	10.4	5.2	4.8-5.9	%	
Total cholesterol	203	159.3	0-200	mg/dL	
Triglycerides	57	28.3	0-149	mg/dL	
HDL- cholestrol	67	58.9	40-60	mg/dL	
LDL- cholesterol	126	95	60-160	mg/dL	
Magnesium	1.9	2.04	1.6-2.55	mg/dL	
Sodium	138	143	136-145	mmol/L	
Potassium	4.5	4.94	3.5-5.1	mmol/L	
Chlorine	105	104.8	94-111	mmol/L	
Total proteins	8.1	NA	6.4-8.3	g/dL	
Urea	44	33.1	15-50	mg/dL	
Creatinine	0.79	0.88	0.5-1.2	mg/dL	
Uric acid	5.7	5.1	2.6-6	mg/dL	
*Preoperative - November 2021					

**Postoperative - March 2022

Table 1 - The biochemistry panel before and 3months after surgery

High IGF1 in addition to facial features were consistent with the diagnostic of acromegaly. Thyroid evaluation showed a low T3 (triiodothyronine) level of 62.43 ng/mL (normal range: 80-200) with TSH (Thyroid Stimulating Hormone) of 0.64 μ UI/mL (normal range: 0.5-4.5) which is consistent with mild central hypothyroidism (Table 2).

The endocrine panel further showed hypogonadotropic hypogonadism, with level of total plasma testosterone of 0.81 ng/mL ranges: 2.49-8.36) (normal and LH (Luteinizing Hormone) level was 2.63 mIU/mL (normal ranges: 1.7-8.6) (Table 4), and low prolactin level of 3.18 ng/mL (normal 4.04-15.2) ranges: (Table 6). ACTH (Adrenocorticotropic Hormone) and cortisol levels were low normal (Table 5), but partial central adrenal insufficiency could not be ruled out considering that an ITT (insulin tolerance test) test could not be performed due to the clinical status and associated newly detected secondary diabetes mellitus. These anomalies are consistent with the diagnostic of hypopituitarism due to macroadenoma and associated apoplexy.

Parameter	Value 1*	Value 2**	[*] Norma	al Units
TSH	0.64	1.5	0.5-4.5	µUI/mL
FT4	10.7	11.95	9-19	pmol/l
T3	62.43	NA	80-200	ng/dL
Plasma	<1	NA	5.17-	ng/mI
calcitonin	<1	INA	9.82	pg/mL
	- N/	h = = 0.00 4		

*Preoperative - November 2021

**Postoperative - March 2022

Table 2 - The thyroid hormonal panel beforeand 3 months after surgery

Bone turnover marker CrossLaps was inhibited and bone formation marker osteocalcin was increased (Table 3). Hypovitaminosis D was also detected. Low bone mineral density for age and gender was not found on central DXA (Dual-Energy X0Ray Absorptiometry) examination (Table 9).

Parameter	Value 1*	Value 2**	Normal	Units
25-hydroxy- vitamin D	14.4	25.3	30-100	ng/mL
CrossLaps	1.49	NA	0.162- 0.436	ng/mL
Osteocalcin	55.65	NA	11-43	ng/mL
Parathormone	49.56	NA	15-65	pg/mL
*Preoperative - November 2021				

**Postoperative - March 2022

Table 3 - Bone metabolism panel before and 3months after surgery

Parameter	Value 1*	Value 2**	Normal	Units
FSH	3.68	5.07	1.5-12.4	mIU/mL
LH	2.63	5.42	1.7-8.6	
Total plasma	0.81	2.68	2.49-8.36	ng/mL
testosterone				8
Free	3.29		1-28.28	pg/mL
testosterone	3.29		1-20.20	pg/mL

*Preoperative - November 2021

**Postoperative - March 2022

Table 4 - Pituitary-gonadal axis hormonal panelbefore and 3 months after surgery

Morning	
Morning 11.24 12.04 4.0	3-66 pg/mL
plasma cortisol 11.34 12.94 4.8	2-19.5 μg/dL

*Preoperative - November 2021

**Postoperative - March 2022

Table 5 - Pituitary-adrenal axis hormonal panelbefore and 3 months after surgery

Value 1*	Value 2**	Normal	Units
0.534	0.06	0.02-6.88	ng/mL
393.3	167.6		ng/mL
(normal	(normal		
ranges:	ranges:		
94-271)	83-262)		
3.18	7.17	4.04-15.2	ng/mL
	0.534 393.3 (normal ranges: 94-271)	0.534 0.06 393.3 167.6 (normal (normal ranges: ranges: 94-271 83-262	0.534 0.06 0.02-6.88 393.3 167.6 (normal ranges: ranges: 94-271) 83-262)

*Preoperative - November 2021 **Postoperative - March 2022

Table 6 - Pituitary-somatotropic axis hormonalpanel before and 3 months after surgery

November 2021	Units
0.53	ng/mL
0.74	ng/mL
0.57	ng/mL
0.4	ng/mL
0.56	ng/mL
	0.53 0.74 0.57 0.4

Table 7 - GH profile/24 hours before surgery

March 2022:-75 mg glucose per os is administered					
time(minutes)	0'	30'	60'	90'	120'
GH(ng/mL)	0.06	0.06	0.07	0.06	0.06
glucose (mg/dL)	78.1	183.4	186.8	160.1	95.4

 Table 8 - GH in OGGT 3 months after surgery

IV (intravenous) contrast MRI detected an inhomogeneous pituitary tumour with haemorrhage and necrosis with maximum diameters of 15 mm (transverse) /12 mm (cranio-caudal) /13 mm(antero-posterior) with particular imaging features that recommended neurosurgery (Figure 1).

Regions	BMD (g/cm2)	Z-score (SD)
L1-4	1.249	-0.4
femoral neck	1.015	-1
total hip	1.119	-0.3

Table 9 - DXA results (BMD=bone mineraldensity)

Immunohystochemistry		
GH	positive	
PRL	positive	
FSH	negative	
LH	negative	
TSH	negative	
ACTH	negative	
Ki 67	positive 15%	

Table 10 - Immunohystochemistry assessmentof pituitary adenoma

The patient underwent transsphenoidal hypophysectomy with favourable postoperative outcome. The hospitalization was for a few days, without peri-operatory complications. The subject was discharged and had a good clinical evolution after surgery. The headache was remitted. Hystopathological and immunohystochemical examination the diagnostic confirmed of pituitary mamosomatotropic adenoma apoplexy that displayed 85% of the tumor volume (Table 10).

At follow-up, after 3 months, normal glycaemic status was observed (Table 1), thus GH in OGTT (oral glucose tolerance test) was performed, and GH suppression was detected (Table 8). The level of IGF1 was 167.6 ng/mL (normal ranges: 83-262) (Table 6). The endocrine panel included normal thyroid function (Table 2) and thyroid ultrasound without pathological changes (Figure 3) and morning plasma cortisol, testosterone and prolactin with levels within normal ranges (Tables 4 to 6).

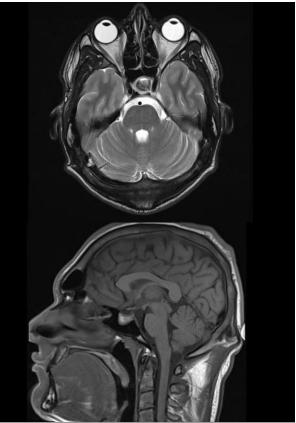


Figure 1 - Preoperative MRI Transversal and sagital plane reaveal an inhomogenous pituitary tumor with hemorrhage and necrosis with maximum diameters of 15mm/12 mm/13 mm.

IV contrast MRI revealed: hypophysis tumor ablation, without residual tumour tissue, postoperative empty sella, left frontal cyst of 12 mm, nasal septum deviation, normal optic chiasm and cavernous sinuses, low neurohypophyseal signal and right T1 posterior clinoid apophysis, adipose tissue with micronodular aspect of 4/4.7 mm, adenohypophysis at the level of sella turcica (Figure 2). Based on the endocrine exam following the neurosurgical procedure, the acromegaly was remitted, either due to apoplexy, either due to hypohysectomy, or both.

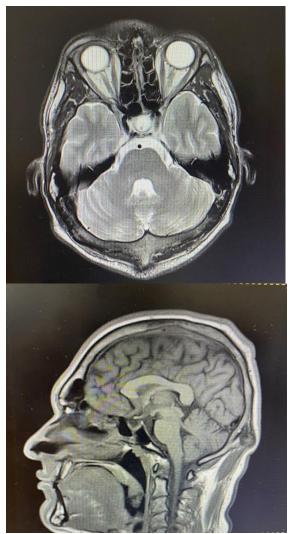


Figure 2 - Three months later MRI scan described hypophyseal tumor ablation, without residual tumoral tissue, postoperative empty sella

Figure 3 - Thyroid ultrasound: Right thyroid lobe: 2/1.78/4.22cm, isthmus: 0.4cm, Left thyroid lobe:2/1.8/3.86cm, Echostructure: isoechoic, fine granular, low Doppler signal, laterocervical region: inflammatory polyadenopathies.

Discussion

This male case points out a form of lifethreatening complication, namely pituitary apoplexy, involving a somatotropinoma. Surgical approach represents the management of choice in most of the cases, especially with large tumours in order to provide the best outcome [1,2]. In the meantime, in cases with headache symptomatic medication is provided life-threatening while acute adrenal insufficiency of central cause requires glucocorticoids substitution. A part from being an emergency, pituitary apoplexy is still a challenging situation due to its recognition because the patient might be apparently healthy, without a prior diagnostic of an endocrine tumour or a genetic syndrome like multiple endocrine neoplasia that increases the risk of an having a pituitary adenoma [2,5].

This report describes a patient with acromegalic clinical features and pituitary tumour apoplexy, an infrequent disease which requires a multidisciplinary team. A review of his photographs indicated changes in appearance starting 5 years ago, at the age of 21. His height was similar to the genetic potential height. The patient has no family history of acromegaly. Considering that this is a case of a young patient with a rare condition, genetic testing would be useful. The genetic panel should take into consideration AIP, menin mutations, etc. [8].

Pituitary apoplexy is a rare clinical occurrence [9]. The cause of tumour apoplexy remains debatable. Due to its large size, one possible cause of tumour apoplexy could be vascular compression. Another possible cause to be taken into account is previously undiagnosed

diabetes mellitus, or the interaction of them both [10].

Surgical treatment was performed not only to prevent recurrence, but also to ensure decompression of the healthy remaining adenohypophysis. Even though adrenal insufficiency remains uncertain, due to the low prolactin level, there should still be a high suspicion of ACTH deficiency. Considering that the patient denied an ITT, close monitoring of haemodynamic status is necessary, especially during infection, events causing low vascular volume and other stress periods.

Conclusion

A young, previously healthy patient presented for headache which led to the discovery of an underlying pituitary adenoma apoplexy. In our patient's case, clinical acromegalic features, laboratory results suggestive of central hypothyroidism and hypogonadism and adrenal evaluation which could not rule out insufficiency are notable. Imagistic and histopathological examination diagnosed pituitary tumour apoplexy, a rare event that can explain laboratory findings such moderately increased IGF1 as with uncharacteristically normal GH levels in 24 hours GH profile. This illustrates the complex effects of pituitary tumour apoplexy. In addition, it is worth mentioning that following surgical treatment, IGF1 levels and glycaemic and status normalized no pituitary insufficiency was found at 3 months followup. Our patient's case emphasizes the importance of rare pathologies such as pituitary tumour apoplexy in the differential diagnosis of severe headache in young healthy patients. otherwise This case highlights the importance of pituitary approach pituitary apoplexy, emergent in an complication with a life-threatening potential.

Abbreviations

ACTH=adenocorticotropic hormone ATG=Anti-thyroglobulin antibodies ATPO=anti-thyroid antibodies BMD=bone mass density BMI=body mass index BP= blood pressure DXA=dual energy X-ray absorptiometry FSH=follicle stimulating hormone FT4=free levothyroxine GH=growth hormone HR=heart rate IGF1=insulin-like growth factor 1 ITT=insulin tolerance test LH=luteinizing hormone MRI=magnetic resonance imaging NA=not available OGTT=oral glucose tolerance test PRL=prolactin T3=triiodothironine TSH=Thyroid Stimulating Hormone

Conflict of interest: none Acknowledgment: none

References

[1] S Alam, S Kubihal, A Goyal, VP Jyotsna. Spontaneous Remission of Acromegaly After Pituitary Apoplexy in a Middle-Aged Male. Ochsner J. 2021 Summer;21(2):194-199.

[2] A Klimko, C Capatina. Pituitary Macroadenoma Presenting as Acromegaly and Subacute Pituitary Apoplexy: Case Report and Literature Review. Cureus. 2020 Aug 8;12(8):e9612.

[3] E Sanz-Sapera, S Sarria-Estrada, F Arikan, B Biagetti. Acromegaly remission, SIADH and pituitary function recovery after macroadenoma apoplexy. Endocrinol Diabetes Metab Case Rep. 2019 Jul 15;2019(1):19-0057.

[4] RC Zhang, YF Mu, J Dong, XQ Lin, DQ Geng. Complex effects of apoplexy secondary to pituitary adenoma. Rev Neurosci. 2017 Jan 1;28(1):59-64.

[5] A Valea, M Carsote, C Ghervan, C Georgescu. Glycemic profile in patients with acromegaly treated with somatostatin analogue. J Med Life. 2015;8(Spec issue):79-83.

[6] D Banerji, NK Das, S Sharma, Y Jindal, VK Jain, S Behari. Surgical management of acromegaly: Long term functional outcome

analysis and assessment of recurrent/residual disease. Asian J Neurosurg. 2016 Jul-Sep;11(3):261-7.

[7] SH Roerink, EJ van Lindert, AC van de Ven. Spontaneous remission of acromegaly and Cushing's disease following pituitary apoplexy: Two case reports.Neth J Med. 2015 Jun;73(5):242-6.

[8] V Puglisi, E Morini, F Biasini, L Vinciguerra, G Lanza, P Bramanti. Neurological Presentation of Giant Pituitary Tumour Apoplexy: Case Report and Literature Review of a Rare but Life-Threatening Condition. J Clin Med. 2022 Mar 13;11(6):1581. doi: 10.3390/jcm11061581.

[9] MA Arnold, Revuelta JM Barbero, G Pradilla, SK Wise.

Pituitary Gland Surgical Emergencies: The Role of Endoscopic Intervention. Otolaryngol Clin North Am. 2022 Apr;55(2):397-410.

[10] M Drissi Oudghiri, I Motaib, S Elamari, S Laidi, A Chadli. Pituitary Apoplexy in Geriatric Patients: A Report of Four Cases. Cureus. 2021 Dec 10;13(12):e20318.